嘈杂的中间量子计算机的出现使搜索可能的应用程序成为量子信息科学的最前沿。量子机学习是一个希望通过近期量子计算机获得优势的领域,其中讨论了基于参数化量子电路的变异量子学习模型。在这项工作中,我们介绍了经典替代物的概念,一个经典模型可以从训练有素的量子学习模型中有效地获得,并重现其投入输出关系。由于可以从经典上进行推论,因此经典替代物的存在大大提高了量子学习策略的适用性。但是,经典的替代品还挑战了量子方案的可能优势。由于可以直接优化经典替代物的ANSATZ,因此它们创建了量子模型必须胜过的天然基准。我们表明,大量的精心设计的重新上载模型具有经典的代理。我们进行了数值实验,发现这些量子模型在我们分析的问题中没有表现或训练性的优势。这仅将概括能力作为量子优势的可能点,并强调可怕的需求,以更好地理解量子学习模型的感应偏见。
translated by 谷歌翻译
最近有兴趣在计算机视觉任务中使用模型中心(预训练模型的集合)。要使用模型中心,我们首先选择一个源模型,然后调整目标的模型以补偿差异。尽管对计算机视觉任务的模型选择和适应性的研究仍有有限的研究,但对于可再生能源领域而言,这甚至更多。同时,根据数值天气预测的天气特征,为对电力预测的需求不断增长提供预测是一个至关重要的挑战。我们通过进行第一个彻底的实验来弥合这些差距,以进行模型选择和适应性的适应性,以在可再生能力预测中转移学习,从而采用了六个数据集中计算机视觉领域的最新结果。我们根据不同季节的数据采用模型,并限制培训数据的量。作为当前最新状态的扩展,我们利用贝叶斯线性回归来预测基于从神经网络中提取的特征的响应。这种方法的表现仅超过基线,只有7天的培训数据。我们进一步展示了如何通过合奏组合多个模型可以显着改善模型选择和适应方法。实际上,有了超过30天的培训数据,两种提出的模型组合技术都取得了与经过一年的培训数据训练的模型相似的结果。
translated by 谷歌翻译
Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
translated by 谷歌翻译
The release of ChatGPT, a language model capable of generating text that appears human-like and authentic, has gained significant attention beyond the research community. We expect that the convincing performance of ChatGPT incentivizes users to apply it to a variety of downstream tasks, including prompting the model to simplify their own medical reports. To investigate this phenomenon, we conducted an exploratory case study. In a questionnaire, we asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT. Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed key medical findings, and potentially harmful passages were reported. While further studies are needed, the initial insights of this study indicate a great potential in using large language models like ChatGPT to improve patient-centered care in radiology and other medical domains.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Over the years, sequential Monte Carlo (SMC) and, equivalently, particle filter (PF) theory has gained substantial attention from researchers. However, the performance of the resampling methodology, also known as offspring selection, has not advanced recently. We propose two deterministic offspring selection methods, which strive to minimize the Kullback-Leibler (KL) divergence and the total variation (TV) distance, respectively, between the particle distribution prior and subsequent to the offspring selection. By reducing the statistical distance between the selected offspring and the joint distribution, we obtain a heuristic search procedure that performs superior to a maximum likelihood search in precisely those contexts where the latter performs better than an SMC. For SMC and particle Markov chain Monte Carlo (pMCMC), our proposed offspring selection methods always outperform or compare favorably with the two state-of-the-art resampling schemes on two models commonly used as benchmarks from the literature.
translated by 谷歌翻译
Scene understanding is crucial for autonomous robots in dynamic environments for making future state predictions, avoiding collisions, and path planning. Camera and LiDAR perception made tremendous progress in recent years, but face limitations under adverse weather conditions. To leverage the full potential of multi-modal sensor suites, radar sensors are essential for safety critical tasks and are already installed in most new vehicles today. In this paper, we address the problem of semantic segmentation of moving objects in radar point clouds to enhance the perception of the environment with another sensor modality. Instead of aggregating multiple scans to densify the point clouds, we propose a novel approach based on the self-attention mechanism to accurately perform sparse, single-scan segmentation. Our approach, called Gaussian Radar Transformer, includes the newly introduced Gaussian transformer layer, which replaces the softmax normalization by a Gaussian function to decouple the contribution of individual points. To tackle the challenge of the transformer to capture long-range dependencies, we propose our attentive up- and downsampling modules to enlarge the receptive field and capture strong spatial relations. We compare our approach to other state-of-the-art methods on the RadarScenes data set and show superior segmentation quality in diverse environments, even without exploiting temporal information.
translated by 谷歌翻译
Autonomous vehicles currently suffer from a time-inefficient driving style caused by uncertainty about human behavior in traffic interactions. Accurate and reliable prediction models enabling more efficient trajectory planning could make autonomous vehicles more assertive in such interactions. However, the evaluation of such models is commonly oversimplistic, ignoring the asymmetric importance of prediction errors and the heterogeneity of the datasets used for testing. We examine the potential of recasting interactions between vehicles as gap acceptance scenarios and evaluating models in this structured environment. To that end, we develop a framework facilitating the evaluation of any model, by any metric, and in any scenario. We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
translated by 谷歌翻译
A reliable pose estimator robust to environmental disturbances is desirable for mobile robots. To this end, inertial measurement units (IMUs) play an important role because they can perceive the full motion state of the vehicle independently. However, it suffers from accumulative error due to inherent noise and bias instability, especially for low-cost sensors. In our previous studies on Wheel-INS \cite{niu2021, wu2021}, we proposed to limit the error drift of the pure inertial navigation system (INS) by mounting an IMU to the wheel of the robot to take advantage of rotation modulation. However, it still drifted over a long period of time due to the lack of external correction signals. In this letter, we propose to exploit the environmental perception ability of Wheel-INS to achieve simultaneous localization and mapping (SLAM) with only one IMU. To be specific, we use the road bank angles (mirrored by the robot roll angles estimated by Wheel-INS) as terrain features to enable the loop closure with a Rao-Blackwellized particle filter. The road bank angle is sampled and stored according to the robot position in the grid maps maintained by the particles. The weights of the particles are updated according to the difference between the currently estimated roll sequence and the terrain map. Field experiments suggest the feasibility of the idea to perform SLAM in Wheel-INS using the robot roll angle estimates. In addition, the positioning accuracy is improved significantly (more than 30\%) over Wheel-INS. Source code of our implementation is publicly available (https://github.com/i2Nav-WHU/Wheel-SLAM).
translated by 谷歌翻译
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps. Thus, they can easily generalize and adapt to new and changing environments. Current Imitation Learning algorithms often only consider unimodal expert demonstrations and act in a state-action-based setting, making it difficult for them to imitate human behavior in case of versatile demonstrations. Instead, we combine a mixture of movement primitives with a distribution matching objective to learn versatile behaviors that match the expert's behavior and versatility. To facilitate generalization to novel task configurations, we do not directly match the agent's and expert's trajectory distributions but rather work with concise geometric descriptors which generalize well to unseen task configurations. We empirically validate our method on various robot tasks using versatile human demonstrations and compare to imitation learning algorithms in a state-action setting as well as a trajectory-based setting. We find that the geometric descriptors greatly help in generalizing to new task configurations and that combining them with our distribution-matching objective is crucial for representing and reproducing versatile behavior.
translated by 谷歌翻译